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SUMMARY

Wind-tunnel measurements of some of the dynamic~stability characteristics
of 0.055-scale models of proposed Apollo launch-escape and command-module con-
figurations (identified as E4yT1-C and C, respectively) have been made at Mach
numbers from 0.30 to 1.20 by using a small-smplitude forced-oscillation tech-
nique. The amplitude of oscillation was 2°. The damping and oscillatory-
stability parameters were measured in pitch for configuration EyT1.C and con-
figuration C with heat shield aft and in a reentry attitude. The damping and
oscillatory-stability parameters were also measured in yaw for configuration C
in a reentry attitude. The investigation was made at angles of attack likely
to be encountered during the several phases of flight. Because of tunnel-size
and balance-load limits, the size of the models was restricted and the centers
of oscillation were not coincident with the proposed center-of-mass locations
for configuration E)T,,C and configuration C in a reentry attitude.

Configuration E;T1oC displayed large changes in the oscillatory-stability
and damping-in-pitch parameters with angle of attack and Mach number. The
damping parameter was near zero at angles of attack of about 0° but decreased
to large negative values at angles of attack greater than about 50; whereas,
the oscillatory-stability parameter generally was negative around zero angle of
attack but became positive for angles of attack greater than about 3°. The
presence of a dummy balance cover on the apex of the command module had no sig-
nificant effect on either the damping or stability parameter.

For configuration C with heat shield aft, the values of the damping and
oscillatory-stability parameters in pitch were nearly independent of angle of
attack and Mach number. The characteristics of configuration C in a reentry
attitude were dependent on angle of attack, Mach number, and Reynolds number.
At the higher angles of attack, the oscillatory-stability parameter was nega-
tive and the damping parameter was positive. At the lower angles of attack,
the oscillatory-stability parameter was positive and the damping parameter was
negative. Appreciable differences in the oscillatory-stability and damping
parameters were measured for the different oscillation-center locations.

For configuration C in a reentry attitude, the oscillatory-directional-
stability parameter was positive and the damping-in-yaw parameter was near zero
or positive at all Mach numbers.

*Pitle, Unclassified.
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INTRODUCTION

A research program is being conducted by the National Aeronautics and
Space Administration to determine the aerodynamic characteristics of proposed
configurations of the Project Apollo vehicle, a manned lunar-explorstion space-
craft. Wind-tunnel measurements of the static longitudinal aerodynamic char-
acteristics of 0.07-scale models of proposed configurations of the Project
Apollo vehicle are presented for Mach numbers from 1.57 to 4.65 in reference 1,
and from Mach numbers of 0.30 to 1.20 in reference 2. Reference 3 presents some
of the dynamic-stability characteristics of the proposed Apollo vehicles desig-
nated ETyoC, EyT12C, and C at Mach numbers from 2.L0 to 4.65.

This paper presents without detailed analysis some of the dynamic-stability
characteristics of configurations E;T;,C and C as obtained in‘the Langley 8-foot

transonic pressure tunnel at Mach numbers from 0.30 to 1.20. The dynamic-
stability characteristics in pitch of the launch-escape configuration EuTlgc and

the command module C with heat shield aft and in a reentry attitude were meas-
ured. In addition, the dynamic-stability characteristics in yaw for the com-
mand module C in a reentry attitude were measured.

Because of tunnel-size and balance-load limits, the size of the models was
restricted and the centers of oscillation were not coincident with the proposed
center-of-mass locations for the model of the launch-escape configuration and
the model of the command module in a reentry attitude. The effect of changes
in the position of the oscillation center of the model of the reentry configura-
tion was investigated. In an effort to determine the effect of Reynolds number
on the stability characteristics, the investigation was conducted over a range
of Reynolds number from 0.62 X lO6 to 3.49 x 106. The data are presented for
the angle-of-attack ranges likely to be encountered during the several phases
of flight.

SYMBOLS

The aerodynamic coefficients are referred to the body system of axes
originating at the oscillation centers of the models, as shown in figure 1.
The equations used to obtain the nondimensional aerodynamic parameters can be
found in reference 3.

A reference area, n(%)g, 0.3912 sq ft .

d reference length, maximum diameter of model, 0.7058 ft
f frequency of oscillation, cps

k reduced-frequency parameter, wd/V, radians
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Cm

Cn

i

free~-stream Mach number

pitching velocity, radians/sec
free-stream dynamic pressure, lb/sq ft
Reynolds number based on 4

yawing velocity, radians/sec
free-stream velocity, ft/sec

mean angle of attack, deg or radians
angle of sideslip, radians

angular velocity, 2nf, radians/sec

Pitching moment
g,Ad

pitching-moment coefficient,

Yawing moment

g, Ad

yawling-moment coefficient,

per radian

per radian

per radian

per radian

per radian

per radian
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3cy,

per radian

aCn
Cni =-———zr- per radian

3 rd

Ve

Cmq + Cmd damping-in-pitch parameter, per radian
Cmgy, - kecmé oscillatory-longitudinal-stability parameter, per radian
Cny - Cné cos a damping-in-yaw parameter, per radian
CnB cos a + kgcni oscillatory-directional-stability parameter, per radian

(The expression cos a appears in the damping-in-yaw and oscillatory-
directional-stability parameters because these parameters are expressed in the
body system of axes.)

A dot over a quantity denotes a derivative with respect to time.
MODELS

Design dimensions of the 0.055-scale models of the proposed Apollo launch-
escape configuration EATIEC and of the command module C are shown in sketch a.

The designations used were assigned by the prime contractor for Apollo to
facilitate identification of various configurations under investigation. The
letters are associated with the component parts as follows: E is for the
escape rocket, T is for the tower, and C is for the command module. Numbered
subscripts refer to specific versions of each component.

The models were made of aluminum, with the escape-rocket tower made of
steel and the escape-rocket motor made of magnesium and plastic-impregnated
fiver glass. The model surfaces exposed to the airstream were aerodynamically
smooth. The openings in the models necessary for sting clearance are shown in
sketch a.

Because of tunnel-size and balance-load limits, the size of the models was
restricted and the centers of oscillation were not coincident with the pro-
posed center-of-mass locatlions for the model of the launch-escape configura-
tion and the model of the command module in a reentry attitude. Since the
oscillation center could not be located at the proposed center of mass of the
model of the command module in a reentry attitude, spacers were used between
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the model and oscillatidn balance for somé tésts so that the oscillation center
could be moved farther from the proposed center-of-mass location to provide a
qualitative indication of the effect of oscillation-center location on the
measured values of the dynamic-stability characteristics. No attempt was made
to show this effect for the launch-escape configuration.

A small circular cylinder was fitted to the apex of the command module of
the model of the launch-escape configuration for several tests to simulate an
extended balance cover which might be used for possible future tests of the
configuration with the balance moved forward to place the oscillation center
at the proposed center-of-mass location.

TUNNEL

The investigation was made in the Langley 8-foot transonic pressure tunnel,
which is a single-return, closed-circult tunnel. The upper and lower walls of
the test section are slotted to permit continuous operation through the tran-
sonic speed range. The Mach number in the test section can be continuously
varied from a low subsonic value to 1.20. The sting-support system is so
designed as to keep the center of oscillation of the model near the center line
of the tunnel through a range of angle of attack from -5° to 14° when used in
conjunction with the oscillation-balance mechanism.

APPARATUS AND PROCEDURE

The models were mounted on an oscillation-balance mechanism. Exploded and
assembled views of its forward portion are shown in the following photograph:

Asgombled oscillation-
bolance mechanism

Drive shott

Supporting sting

Scotch yoke

Displocement bridge

Mechanical spring -———-.

<

Moment bridge

L-63-1969.1
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The oscillation-balance mechanism consists of a two-component strain-gage
balance which is rigidly forced to perform a single-degree-of-freedom angular
oscillation. The rotary motion of an amplidyne-controlled motor is used to
give the essentially sinusoidal oscillatory motion to the balance through a
crank and Scotch yoke mechanism. The frequency of oscillation can be varied
from about O to 25 cycles per second. A mechanical spring is mounted inside
the oscillation balance in such a way that the test model is connected to
ground (the supporting sting) through the spring as well as through the strain-
gage beams of the oscillation balance. The mechanical spring has mounted to
it a wire-strain-gage bridge which provides an output proportional to model
displacement with respect to the fixed sting.

Dynamic data are obtained from the oscillation balance by alternating-
current strain-gage bridges which sense the instantaneous torque required to
drive the model and the instantaneous angular displacement of the model with
respect to the sting. These strain-gage bridges modulate 3,000-cycle carrier
voltages which are passed through coupled electrical sine-cosine resolvers
that rotate at the frequency of oscillation of the model. The resolvers divide
the signals into orthogonal components, which are then demodulated and read on
damped digital voltmeters. By responding only to signals at the fundamental
frequency of oscillation, the resolver——damped-voltmeter system performs the
desirable function of eliminating the effects of random torque inputs due to
airstream turbulence or buffeting. The maximum torque required to drive the
model, the maximum displacement of the model with respect to the sting, and
the phase angle between torque and displacement are found from the orthogonal
components of torque and displacement. The frequency of oscillation is obtained
by counting pulses generated by an induction-coil pickup and a 100-~tooth gear
fastened to the shaft of one of the resolvers. The damping and spring-inertia
characteristics are then computed from the measured values of torque, displace-
ment, phase angle, and frequency.

All data were taken with the model oscillating near its velocity-resonance
frequency, since this condition results in greater accuracy in determining the
model damping and stability characteristics. A detailed discussion of this
technique of measuring the dynamic-stability characteristics of models is
given in reference k4.

PRESENTATION OF DATA

The investigation was made at Mach numbers from 0.30 to 1.20 by using a
small-amplitude forced-oscillation technique. The amplitude of the model
oscillations was 2°. Reynolds number, based on the maximum diameter of the
model, varied from 0.62 x 106 to 3.49 x 106. The upper values of the Reynolds
number were dictated by the load limits of the oscillation balance. The data
were taken for angles of attack likely to be encountered during the several
phases of flight.
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The basic dynamic-stability data obtained in this investigation are pre-
sented in the following figures:

Configuration M R a, deg Figure
Longitudinal
E, T, 5C 0.30 | 2.50 x 106 -8 t0 0 1(a)
(launch-escape) .TO 3,49 -4 to 4 1(b)
.T0 .62 -12 to 6 1(b)
.90 2.78 -5 to k4 1(c)
1.00 2.88 -5 to 3 1(d)
1.00 .72 -12 to 6 1(a)
1.20 2.96 -6 to 5 1(e)
1.20 .T5 -12 to 6 1(e)
C (command module), | 0.30 | 2.50 x 100 | -12 to 6 2(a)
heat shield aft .70 3.49 2(b)
.90 2.78 2(c)
1.00 2.88 2(d)
1.20 | 2.96 2(e)
C (command module), | 0.30 | 2.50 x 100 | 136 to 154 3(a)
reentry attitude .70 3.49 3(b) and 4(a)
.70 .62 3(b)
.90 2.78 3(c)
1.00 2.88 3(d) and 4(b)
1.00 .72 3(d)
1.20 2.96 3(e) and 4(c)
1.20 .75 Np 3(e)
Directional
C (command module), | 0.30 | 2.50 x 106 | 136 to 154 5(a)
reentry attitude .70 3.49 5(b)
.90 2.78 5(c)
1.00 2.88 5(d)
1.20 2.96 5(e)

SUMMARY OF RESULTS

A detailed analysis of the dynamic-stability characteristics of models of
proposed Apollo configurations E; T ,C and C has been omitted. However, some

of the more important results are summarized. As previously mentioned, the
oscillation centers were not coincident with the proposed center-of-mass loca-
tions for the model of the launch-escape configuration and the model of the
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command module in a reentry attitude. Therefore, the data are strictly appli-
cable only for the geometry and oscillation centers used.

As seen in figure 1, the model of the launch-escape configuration E;T,,C

displayed large changes in the oscillatory-longitudinal-stability and damping-
in-pitch parameters with mean angle of attack and Mach number, particularly
near a = 0°. In general, the damping parameter was near zero at a = 0° vbut
decreased to large negative values at angles of attack greater than about 30,
Except at M = 0.30, the oscillatory-stability parameter was negative at o = 0°
but rapidly increased to large positive values at angles of attack greater than
about 3°. This combination of strong positive increases in the stability param-
eter accompanied by large negative changes in the damping parameter is typical
and has been measured for many different models; an example can be seen in ref-
erence 5. Similar trends of the stability and damping parameters were also
measured for this model at Mach numbers from 2.40 to 4.65 in the investigation
presented in reference 3. Large changes in Reynolds number did not signifi-
cantly affect the measured parameters except at M = 1.,00. The presence of

the dummy balance cover on the apex of the command module had no significant
effect on either the damping or the stability parameter.

For the model of the command module C with heat shield aft, the values of
the damping-in-pitch and oscillatory-stability parameters were essentially
independent of both angle of attack and Mach number, except at the lower Mach
numbers. (See fig. 2.)

As shown in figure 3, the characteristics of the model of the command
module C in a reentry attitude were dependent on mean angle of attack, Mach
number, and Reynolds number. The oscillatory-stability parameter was positive
at the lower angles of attack and became negative at the higher angles of
attack. The damping-in-pitch parameter was zero or negative at the lower angles
of attack and became positive at the higher angles of attack.

Figure 4 shows the effect of oscillation-center location on the character-
istiecs of this configuration. Appreciable nonlinear changes in the damping-in-
pitch and oscillatory-stability parameters were measured at the different
oscillation-center locations. The oscillatory-stability parameter, however, was
more negative at the forward oscillation center, as would be expected, and the
trends indicate that the stability parameter would remain negative through a
greater range of angle of attack at the more forward proposed center-of-mass
location. Although the measured damping was quite erratic, the trends, espe-
cially at M = 1.20, indicate that the greatest negative values of the damping-
in-pitch parameter would occur at the forward oscillation center nearest the
proposed center-of-mass location.

For the model of the command module C in a reentry attitude, the
oscillatory-directional-stability parameter was positive (indicating positive
trim stability) and the damping-in-yaw parameter was near zero or positive at
all Mach numbers. (See fig. 5.) The damping-in-yaw parameter and the
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oscillatory-directional-stability parameter showed only slight dependence on
mean angle of attack and Mach number.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., November 20, 1963.
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Figure 5.- Variation of damping-in-yaw parameter, oscillatory-directional-stability parameter, and

reduced-frequency parameter with angle of attack for model of command module C in a reentry
attitude.
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